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Cooperation and self-regulation in a model of agents playing different games

H. Fort
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~Received 23 October 2002; revised manuscript received 15 April 2003; published 19 August 2003!

A simple model for cooperation between ‘‘selfish’’ agents, which play an extended version of the prisoner’s
dilemma game, in which they use arbitrary payoffs, is presented and studied. A continuous variable, represent-
ing the probability of cooperation,pk(t)P@0,1#, is assigned to each agentk at timet. At each time stept a pair
of agents, chosen at random, interact by playing the game. The players update theirpk(t) using a criterion
based on the comparison of their utilities with the simplest estimate for expected income. The agents have no
memory and do not use strategies based on direct reciprocity or ‘‘tags.’’ Depending on the payoff matrix, the
system self-organizes—after a transient—into stationary states characterized by their average probability of

cooperationp̄eq and average equilibrium per-capita incomep̄eq ,Ū` . It turns out that the model exhibits some
results that contradict the intuition. In particular, some games thata priori seem to favor defection most, may
produce a relatively high degree of cooperation. Conversely, other games, which one would bet lead to
maximum cooperation, indeed are not the optimal for producing cooperation.

DOI: 10.1103/PhysRevE.68.026118 PACS number~s!: 89.75.Fb, 89.65.Gh
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I. INTRODUCTION

Game theory constitutes a powerful and versatile
proach to analyze the collective behavior of adaptive age
from humans to bacteria and firms. In particular, theprison-
er’s dilemma~PD! game plays in game theory a role simil
to the harmonic oscillator in physics. It has been also
ferred to as theEscherichia Coliof social sciences, allowing
a very large variety of studies. Indeed, this game, develo
in the early 1950s, offers a very simple and intuitive a
proach to the problem of how cooperation emerges in s
eties of ‘‘selfish’’ individuals, i.e., individuals who pursu
exclusively their own self-benefit. It was used in a series
works by Axelrod and co-workers@1# to examine the basis o
cooperation between selfish agents in a wide variety of c
texts. Furthermore, mechanisms of cooperation based on
PD have shown their usefulness in political science@2–4#,
Economics@5–11#, international affairs@12–15#, theoretical
biology @16–18#, and ecology@19,20#.

The PD game consists in two players, sayi and j, each
confronting two choices: cooperate~C! or defect ~D! and
each makes its choice without knowing what the other w
do. The four possible outcomes for the interaction of agei
with agentj are:~1! they can both cooperate (C,C), ~2! both
defect (D,D), ~3! i cooperates andj defects (C,D), and~4!
i defects andj cooperates (D,C). Depending on the situation
~1!, ~2!, ~3!, or ~4!, the agenti ~j! gets, respectively: the
‘‘reward’’ R(R), the ‘‘punishment’’ P(P), the ‘‘sucker’s
payoff’’ S ~the ‘‘temptation to defect’’T) or T(S). These
four payoffs obey the following chain of inequalities:

T.R.P.S; ~1!

for instance, the four canonical PD payoffs are:R53,
S50, T55, andP51. Clearly it pays more to defect: if on
of the two players defects, sayi, the other who cooperate
will end up with nothing. In fact, even if agenti cooperates,
agent j should defect, because in that case he will geT
which is larger thanR. That is, independently of what th
other player does, defectionD yields a higher payoff than
1063-651X/2003/68~2!/026118~6!/$20.00 68 0261
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cooperation and is thedominant strategyfor rational agents.
This is equivalent to saying, in a more technical langua
that, the outcome (D,D) of both players is the Nash equilib
rium @21# of the PD game. The dilemma is that if both defe
both do worse than if both had cooperated: both players
P which is smaller thanR.

One can assign apayoff matrix MRSTP to the PD game
given by

MRSTP5S ~R,R! ~S,T!

~T,S! ~P,P!
D ,

which summarizes the payoffs forrow actions when con-
fronting with columnactions.

The emergence of cooperation in PD games is gener
assumed to require repeated play~and strategies such astit
for tat @1#, involving memory of previous interactions! or
features~‘‘tags’’ ! permitting cooperators and defectors to d
tinguish one another@22#.

In this work, I consider a simple model of selfish agen
possessing neither memory nor tags, to study the s
organized cooperative states that emerge when they pla
extendedPD game with arbitrary payoffs, i.e., payoffs th
do not necessarily fulfill inequalities~1!. The taxonomy of
232 games~one-shot games involving two players with tw
actions each! was constructed by Rapoport and Guyer@23#,
and showed that there exist exactly 78 nonequivalent gam

There areNag agents, with one variable assigned to ea
agent at the site or cellk and at timet: his probability of
cooperationpk(t). Pairs of agents,i andj, interact by playing
the PD game at each time stept. I use a mean field~MF!
approach, in which all the spatial correlations in the syst
are neglected, and thus agentsi and j are chosen at random
@24#. After playing the game the players update their pro
ability of cooperationpi(t) andpj (t) according to the same
definite ‘‘measure of success’’ that does not vary with tim
Thus all agents follow a universal and invariant strategy
fined by a measure of success plus an updating rule to tr
form pi(t) andpj (t) into pi(t11) andpj (t11).
©2003 The American Physical Society18-1
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After a transient, the system self-organizes into a stat
equilibrium characterized by the average probability of c
operationp̄eq which depends on the payoff matrix.

Payoff matrices can be classified into subcategories
cording to their dominant strategy. Let us callMD the class
of those matrices, such that

T.R, and P.S, ~2!

for which the dominant strategy isD. This class comprises
for instance, the canonical matrixM3051 and M1053, etc. A
second classMC corresponds to

R.T, and S.P, ~3!

for which the dominant strategy isC, examples of this class
are the matricesM5310andM3501. The remaining matrices do
not comply with Eq.~2! or ~3! and produce situations,a
priori , not dominated by (D,D) or (C,C).

One might wonder why bother to study matrices that i
ply no dilemma and are unrealistic in order to model t
social behavior of the majority of individuals. There are se
eral reasons. First, these ‘‘unreasonable’’ payoff matrices
be used by minorities of individuals which depart from t
‘‘normal’’ ones ~assumed to be neutral!. For instance, ‘‘anti-
social’’ ‘‘always D ’’ individuals, which cannot appreciate
any advantage of cooperation, or ‘‘altruistic’’ ‘‘alwaysC’’
individuals. Second, it seems interesting to test the rob
ness of cooperation under changes in the payoff matrix
particular, we will see that even payoff matrices that imply
dilemma can produce eitherp̄eq50.5 or p̄eq50. Third, arbi-
trary payoff matrices could be also of importance in oth
contexts different from societies. One might envisage sit
tions in which a definite value ofp̄eq is required or is desir-
able in the design of a system or is the one that optimizes
functioning of a particular mechanism, etc. For example
understand how a market of competing firms attains s
regulation. Or, for instance, in the traffic problem, where
damage suffered from mutualD ~crash! exceeds the damag
suffered by being exploited~turn away!, which is more ap-
propriately described by the so-calledchicken gamefor
which T.R.S.P.

Fourth, we will show results for those payoff matric
that, at first glance, defy our intuition. For example, pay
matrices that, at least in principle, one would bet that fa
defection and indeed produce a not so low degree of co
eration.

II. A MECHANISM TO PRODUCE COOPERATIVE
EQUILIBRIUM STATES

Among the weaknesses of major approaches that h
been considered to answer the question about the emerg
of cooperation, two are often remarked. The first criticism
about the oversimplification in the behavior of agents: th
either always cooperate~C! or always defect (D). Clearly,
this is not very realistic. Indeed, the levels of cooperation
the individuals seem to exhibit a continuous gamma of v
ues. The second objection is concerning the determin
02611
of
-

c-

-

-
n

t-
In

r
-

e
o
f-
e

f
r
p-

ve
nce
s
y

f
l-
ic

nature of the algorithms which seem to fail to incorporate
stochastic component of human behavior.

Both problems can be overcome by assigning to e
agentk a probability of cooperationpk(t) ~a real number in
the interval@0,1#! instead of a definite behavior such asC or
D. Concerning the first objection,pk(t) reflects the existence
of a ‘‘gray scale’’ of levels of cooperation instead of ju
‘‘black’’ and ‘‘white.’’ Regarding the second objection, th
proposed algorithm is clearly nondeterministic: agentk plays
C with probability pk andD with probability 12pk .

Now, let us describe the dynamics. The pairs of intera
ing partners, by virtue of the MF treatment, are chosen r
domly instead of being restricted to some neighborhood. T
implicit assumptions are that the population is sufficien
large and the system connectivity is high, i.e., the age
display high mobility or they experienced interaction at
distance~for instance, electronic transactions!. In this work
the population of agents will be fixed toNag51000 and the
number of time steps will be of ordert f51052106 in such a
way that both assumptions be also consistent with the
that agents have no memory.

Starting from an initial state att50 taken aspk(0) cho-
sen at random~in the interval@0,1#! for each agentk, the
system evolves by iteration duringt f time steps following
the procedure.

~1! Selection of players.Two agents, located at random
positionsi and j, are selected to interact, i.e., to play the P
game.

~2! Playing pairwise PD.The behavior,C or D, of each
playerk (k5 i or k5 j ) is decided generating a random num
ber r and if pk(t).r then he plays C and, conversely,
pk(t),r he playsD.

~3! Assessment of success.Each of the two players com
pares his utilitiesUk(t), which is one of the four PD payoffs
R, S, T, or P, with anestimateek(t) of his expected utilities.
If Uk(t)>ek(t) @Uk(t),ek(t)# the agent assumes he is d
ing well ~badly! and therefore its level of cooperation is a
equate~inadequate!.

~4! Probability of cooperation update.If player k is doing
well he keeps his probability of cooperationpk(t). On the
other hand, if playerk is doing badly he decreases~increases!
his probability of cooperationpk(t) if he played C(D)
choosing an uniformly distributed value betweenpk(t) and 1
@between 0 andpk(t)].

In order to introduce a simple and natural estimateek(t)
let us consider two playersi and j who cooperate, at timet,
with probabilitiespi(t) and pj (t), respectively@and defect
with probabilities 12pi(t) and 12pj (t)], thus the expected
utilities for the playeri, Ui j

RSTP(t), are given by

Ui j
RSTP~ t !5Rpi~ t !pj~ t !1Spi~ t !@12pj~ t !#1T@1

2pi~ t !#pj~ t !1P@12pi~ t !#@12pj~ t !#, ~4!

while the expected utilities for the playerj, U ji
RSTP, are ob-

tained by interchangingi and j in the above equation.
This implies that, given the average probability of coo

eration p̄(t), an arbitrary agent, say numberk, can estimate
his average expected utilities as
8-2
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Uk
RSTP

„p̄~ t !…5Rp̄~ t !pk~ t !1Spk@12 p̄~ t !#

1T@12pk~ t !# p̄~ t !1P@12 p̄~ t !#@12pk~ t !#.

~5!

However, it turns out that, in general, the value ofp̄ is un-
known by the agents. Hence, a simpler estimate that ca
used by agentk for his expected utilitiesek(t) is obtained by
replacing in Eq.~5! p̄(t) by his own probability of coopera
tion pk(t):

ek
RSTP~ t ![Rpk

2~ t !1~S1T!pk@12pk~ t !#1P@12pk~ t !#2

5~R2S2T1P!pk
2~ t !1~S1T22P!pk~ t !1P.

~6!

In other words, agentk adopts the simplest possible extrap
lation, i.e., that he is a ‘‘normal’’ individual whose probabi
ity of cooperation is representative of the average value.1

The rule each player follows to update his probability
cooperation is quite natural and of the type ‘‘win-stay’’ an
‘‘lose-shift.’’ That is, if the player’s utilitiesUk are larger
than his estimate, he keeps his probability of cooperation.
the other hand, if the utilities are smaller than his estima
he changes his probability of cooperation:~a! increasing it if
he playedD or ~b! decreasing it if he playedC. From Eq.~6!
the update ofpk(t)→pk(t11) is governed by the sign o
Uk(t)2ek

RSTP(t), i.e., by the following inequations:

~S1T2R2P!pk
2~ t !2~S1T22P!pk~ t !1S R

S

T

P

D 2P
.

,
0;

~7!

in the case.0 (,0) pk is increased~decreased!.
In the following section we will see that the strategy th

results from the combination of the proposed measure
success and update rule forpk—the steps~3! and ~4!—pro-
duces, for a wide variety of payoff matrices, cooperat
states withp̄eq.0.

Let us end this section with a remark about the probl
addressed here and its relation with the evolution of co
eration. In this approach, there is no competition of differ
strategies, all the agents follow the same universal stra
that does not evolve over time. However, the system is ad
tive in the sense that the probabilities of cooperation of
agents do evolve.

1Considering more sophisticated agents, which have ‘‘good in

mation’’ on the population~for instance, the value ofp̄ at time t),
does not change substantially the main results obtained with t
naive agents.
02611
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III. RESULTS

Depending on the payoffsR,S,T, andP the system self-
organizes, after a transient, in equilibrium states with val
of p̄eq ranging from 0 to 1. The equilibrium asymptotic stat
can be lumped into three groups according to the degre
cooperation attained:highly cooperative( p̄eq.0.5), moder-

ately cooperative( p̄eq.0.5), andpoorly cooperative( p̄eq

,0.5). The outcomes for any arbitrary payoff matrixMRSTP

can be understood in terms of the updating rule for the
operation probability and the corresponding estimateeRSTP,
i.e., from the inequalities~7!.

The payoff matrices that imply a dilemma—those th
comply with the chain of inequalities~1!—lead either to
p̄eq5

1
2 or to p̄eq50. From Eq. ~7! it emerges thatp̄eq

50.5 occurs in the case wheneRSTP2P has no roots in the
interval ~0,1# (p50 is always one of the two roots! and
p̄eq50 in the opposite case.

Some other matrices not belonging to classMD exhibit a
tension betweenC andD and give rise top̄. 1

2 . The matrices
that do not embody such trade-off produce the situations
depart most fromp̄eq.

1
2 .

It is illustrative to consider, for a moment, the restrict
subset of 24 payoff matrices obtained from permutation
the four canonical payoff values because it covers the th
groups with different cooperation levels mentioned above
fact, the system self-organizes into equilibrium states w
seven values ofp̄eq : 2 matrices (M3501 andM3510) produce
p̄eq51,2 matrices,M1053 and M0153 produce p̄eq50. The
remaining 20 matrices produce intermediate values:p̄eq

.0.72 (M5301), p̄eq.0.62 (M3510), p̄eq.0.38 (M0135),
p̄eq.0.28 (M1035), and p̄eq50.5 ~the other 16 matrices an
among them the canonical payoff matrix!. The 24 measures
are performed over 500 simulations. Figure 1 shows the
erage probability of cooperation for different payoff matric
versus time for the 50 000 first time steps. The mirror sy
metry with respect to the valuep̄50.5 between the curve
for p̄(t) corresponding to a given matrixMRSTPand its pal-
indromeM PTSR is due to the symmetry of the game whe
interchangingR↔P andS↔T simultaneously with coopera
tors C by defectorsD. That is,

p̄RSTP~ t !5~12p!PTSR~ t !. ~8!

A particular interesting case study is provided by pay
matrix M0135with p̄eq.0.38. This result seems, at first sigh
counterintuitive: an intermediate cooperation level attain
with 0 reward~and very low sucker’s payoff!. Nevertheless,
let us show how the updating rule for the cooperation pr
ability explains this outcome. The estimate for this matr
given by the parabola

ek
01355pk

226pk15, ~9!

plotted as a solid curve in Fig. 2~the horizontal lines atS
51 andT53 cut the parabola at abscisespS532A5 and
pT532A7, respectively!. The cooperation update rule tel

r-

se
8-3
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us that the agentk increases his probability of cooperatio
when he playsD and getsT53 if pk is less thanpT53
2A7,0.5, i.e., this temptation is not enough@T
,ek

0135(pk)#. On the other hand, he decreases his probab
of cooperation when he playsC and getsR50, indepen-
dently of the value ofpk , or when he getsS51 if pk is less
thanpS532A5.0.5. In the remaining situations the play
keeps his probability of cooperation. Thus a value ofp̄eq
between 0 and 0.5 is not surprising after all, rather it is
result of giving the two competing probabilities of cooper
tion flows. All this analysis for payoff matrixM0135 works
also for any set of payoffs obeying the inequalities

P.T.S.R, ~10!

the only thing that changes is the value ofp̄eq . We will come
back over this particular payoff matrix to illustrate howpeq
changes under arbitrary variations of the payoffs.

The effect of changing payoffs

We are now going to analyze the effect of changing
payoff matrix in order to go beyond the 24 permutations
the canonical payoffs.

We have seen that the sign ofUk2ek controls the update
of pk . From the definition ofek , as an estimate of utilities o
agentk, it is clear that it is bounded from above and fro
below by the largest and smallest of the four payoffs, resp
tively. Thus,Uk2ek may have different signs, depending o
the value ofpk , only for the two intermediate payoffs. Let u
denote byp1 the value ofpk such that the estimateek be-
comes equal to the larger payoff,p2 the value ofpk such that
the estimate becomes equal to the second larger payoff,
so on. Therefore, it is easy to see that the change inp̄eq is

FIG. 1. Curves ofp̄ vs the number of iterationst, corresponding
to the 24 payoff matrices obtained by permuting the four canon
payoffsR53, S50, T55, andP51. The system self-organizes i

seven different cooperative states with:p̄eq51, p̄eq.0.72, p̄eq

.0.62, p̄eq.0.5, p̄eq.0.38, p̄eq.0.28, andp̄eq.0.
02611
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controlled by the displacements ofp2 and p3 ~for instance,
for M0135, p2[pT and p3[pS). If p2 or p3 corresponds to
the cooperative payoff,R or S, then its displacement to th
right ~left! decreases~increases! the proportion ofC agents
for whom Uk.ek which are, on average, the ones who r
main C after playing the game. This in turn decreases~in-
creases! p̄eq . On the other hand, ifp2 or p3 corresponds to
the noncooperative payoff,T or P, then its displacement to
the right ~left! decreases~increases! the proportion ofD
agents for whomUk.ek which are, on average, the one
who remainD after playing the game. This in turn increas
~decreases! p̄eq .

The payoff matrixM0135 will serve to illustrate the effect
the changes in the values of the payoffs have onpeq . We
will proceed by modifying one of the four payoffs at a tim
and keeping fixed the remaining three in such a way that
chain of inequalities~10! is preserved. This variation of a
quantity that results when the payoffX is modified and the
other three payoffs remain fixed is denoted bydX . The esti-
mates that result from these changes are the curves show
Fig. 2. Let us consider first the changesdS1, produced by an
increment in the sucker’s payoff fromS51 to S52 ~which
transformsM0135 into M0235), dS2, produced by a decreas
from S51 to S50 ~which transformsM0135 into M0035). For

FIG. 2. ~a! Below: The estimatee0135(p) vs p ~solid line! com-
pared with the estimates that result for independent variation
payoffsSandP, once at a time:e0035~dotted thin line!, e0235~dotted
thick line!, e0134 ~dot-dashed thin line!, ande0136 ~dot-dashed thick
line!. The circles correspond to the pointse013551 ande013553.
The filled up~down! triangles correspond to the pointse023552 and
e023553 (e003550 ande003553). The nonfilled up~down! triangles
correspond to the pointse013651 ande013653 (e013451 ande0134

53). ~b! Above: The estimatee0135(p) vs p ~solid line! compared
with the estimates that result for independent variations of payofT
andR, once at a time:e0125 ~dashed thin line!, e0145 ~dashed thick
line!, and e1135 ~1’s!. The circles correspond to the pointse0135

51 ande013553. The filled up triangles correspond to the poin
e113551 and e113553. The nonfilled up~down! triangles corre-
spond to the pointse014551 and e014554 (e012551 and e0125

52). See text.

al
8-4
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M0235, p3 is the abscise of the pointek[S52 @filled up
triangle in Fig. 2~a!# and forM0035, p3 is the abscise of the
point ek[S50 @filled down triangle in Fig. 2~a!#, while the
correspondingp2 are the abscises of the pointsek[T53
@filled triangles: up forM0235 and down forM0035 in Fig.
2~a!#. We can see that increasing~decreasing! the sucker’s
payoff, fromS51 to S52 (S50), produces a displacemen
of p2 to the right ~left!, from 32A7.0.354 to 0.4@to (7
2A33)/4.0.314], and ofp3 to the left ~right!, from 3
2A5.0.764 to 0.6~to 1!. Hence, both changes point in th
same direction increasing~decreasing! peq as can be ob-
served in Fig. 3~dotted lines versus solid lines!. In other
words,

dS1~p22p3!.~0.420.354!2~0.620.764!50.21.0,

dS2~p22p3!.~0.31420.354!2~120.764!520.276,0.
~11!

Similarly, we denote bydP1 the variations produced b
an increment in the punishment, fromP55 to P56 ~which
transformsM0135 into M0136), and bydP2 the variations pro-
duced by a decrease in the punishment, fromP55 to P
54 ~which transformsM0135 into M0134). For both matrices,
the correspondingp2 and p3 are the abscises of the poin
ek[T53 andek[S51 ~nonfilled triangles in Fig. 2: up for
M0136 and down forM0134), respectively. Also in Fig. 2~a!
we see that changing the punishment, fromP55 to P56
(P54), produces a displacement ofp2 to the right ~left!,
from 32A7.0.354 to (42A10)/2.0.419~to 0.25! , and of
p3 to the right ~left!, from 32A5.0.764 to (42A6)/2
.0.775 ~to 0.75!, hence the two changes point in oppos
directions: the first tends to increase~decrease! peq and the
second to decrease~increase! it. As the first displacement is
larger it dominates, and the net result is an increase~de-
crease! of peq as can be observed in Fig. 3~dot-dashed lines
versus solid line!. That is,

FIG. 3. The effect of independent variations of payoffsS,T, and
P ~the reward remains fixed atR50), once at a time, from payof
matrix M0135. Variations ofS: S52 ~dotted thick line!, S50 ~dotted
thin line!. Variations ofP: P56 ~dot-dashed thick line!, P54 ~dot-
dashed thin line!. Variations ofT: T54 ~dashed thick line!, T52
~dashed thin line!. Variations ofR: R51 ~‘‘ 1’’ !.
02611
dP1~p22p3!.~0.41920.354!2~0.77520.764!50.054.0,

dP2~p22p3!.~0.2520.354!2~0.7520.764!520.09,0.
~12!

On the other hand, let us consider the variations produ
by the increment of the temptationdT1, from T53 to T
54 ~which transformsM0135 into M0145), and by its de-
creasedT2, from T53 toT52 ~which transformsM0135 into
M0125). For M0145, p2 is the abscise corresponding to th
point ek[T54 ~nonfilled up triangle! and for M0125, p2 is
the abscise of the pointek[T52 ~nonfilled down triangle!,
while the correspondingp3 are the abscises of the poin
ek[S51 ~nonfilled triangles: up forM0145 and down for
M0125). In Fig. 2~b! we can see that increasing~decreasing!
the sucker’s payoff, fromT53 to T54 (T52), produces a
displacement ofp2 to the left~right!, from 32A7.0.354 to
0.2 ~to 0.5! and of p3 to the right ~left!, from 32A5
.0.764 to 0.8@to (72A17)/2.0.719]. Hence, both change
point in the same direction decreasing~increasing! peq as can
be observed in Fig. 3~dashed lines versus solid line!. That is

dT1~p22p3!.~0.220.354!2~0.820.764!520.19,0,

dT2~p22p3!.~0.520.354!2~0.71920.764!50.19.0.
~13!

With a similar argument one realizes that increasing~de-
creasing! the rewardR50 peq decreases~increases!.

In summary, for payoff matrices likeM0135, which obey
the chain of inequalities~10!, we found two expected results
a higher value ofpeq can be reached by increasing the suc
er’s payoffS ~which makesC agents more altruistic! or de-
creasing the temptationT ~reducing the incentives to fre
ride!. Additionally, we found twoa priori unexpected results
a higher value ofpeq can also be reached by increasing t
punishmentP or decreasing the rewardR. By an inspection
of Fig. 2~a! the effect of an increment ofP can be understood
as a rising the expectations of theD agents, which in turn
diminishes the fraction of agents that are satisfied after p
ing the game. Similarly, from Fig. 2~b! we can see that de
crease ofR makes theC agents less ambitious and increas
the fraction of altruists.

It is worth remarking that, for the case of payoffs obeyi
Eq. ~10!, something which at first seems as innocent as
interchange the two noncooperative payoffsT and P has a
dramatic consequence: it transforms a system with an in
mediate level of cooperation into one with null cooperatio
This can be understood by comparing the estimate~9! for
payoff matrixM0135 to the one forM0153, which is given by

ek
0153523pk

213. ~14!

Both estimates have maximum value ofP ~5 and 3, respec-
tively, at pk50), but the important difference is that in th
first caseP is the maximum payoff while in the second on
P,T. Thus in this second case, only the agents that plaC
can do badly, and then the only possible change forpk ~ac-
cording to its update rule! is a reduction till it reaches zero
value.
8-5



to
er

y
yo

m

r
n-
ee

of
ad
s
e

, i
ty

w
n,
h a
the

ct
er-
off

all
is
nts

ity
ors
suc-

ure
one

to
se-
odel
ct
-
an

rec-

n-

H. FORT PHYSICAL REVIEW E 68, 026118 ~2003!
Finally, let us include a note regarding the efficiency
attain cooperative regimes. The state of maximum coop
tion p̄eq51 is reached for payoff matrices such thatS>R
.max$T,P% plus the condition that equation

~S1T2R2P!p22~S1T22P!p1R2P50 ~15!

has no roots in the interval@0,1# different fromp51 @which
is always a root of Eq.~15!#. This condition on the roots is
because in the opposite case, when there is a rootpx in
between 0 and 1, it follows easily from inequations~7! that p̄
converges to the semisum ofpx and 1. It can be checked b
elemental algebra that this is the case of, for instance, pa
matricesM3501, M3510.

IV. CONCLUSIONS

The success of the strategy to attain cooperative regi
for a wide variety of games~payoff matrices!—mainly those
that imply dilemmas or clearly favorD—relies on the com-
bination of the proposed measure of success and update
for the probability of cooperation. Basically, it works by tu
ing the agent’s cooperation guided by a trade-off betw
efficiency~increase of utilities! and equity~indirect reciproc-
ity!. If the agent is doing well he maintains his probability
cooperation, otherwise he changes it. When he is doing b
playing D he becomes more cooperative, i.e., he increa
his probability of cooperation, attempting to change to b
haviorC and explore this alternative behavior. Conversely
he is doing badly playingC then he decreases his probabili
of cooperation attempting to change to behaviorD and see
what happens.
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An interesting extension of the model would be to allo
competition of different strategies to promote their evolutio
i.e., players who imitate the best-performing ones in suc
way that lower scoring strategies decrease in number and
higher scoring ones increase.

Another possibility would be to allow the use of distin
payoff matrices. For instance, individuals inclined to coop
ate~defect! might be represented by agents using the pay
matrix M5301 (M1035) while ‘‘neutral’’ ordinary agents by
those using the canonical payoff matrixM3051. This would
make possible to study if mutants inclined toD can invade a
group of neutral individuals or individuals inclined toC and
drive out all cooperation.

Here I considered a MF approximation that neglects
the spatial correlations. One virtue of this simplification
that it shows that the model does not require that age
interact only with those within some geographical proxim
in order to sustain cooperation. Playing with fixed neighb
is sometimes considered as an important ingredient to
cessfully maintain the cooperative regime@25,26#. However,
the quality of this MF approximation depends on the nat
of the system one desires to model, and varies whether
deals with human societies, viruses@27#, cultures of bacteria
@28#, or market of providers of different products. In order
consider situations in which the effect of geographic clo
ness cannot be neglected, an alternative version of this m
might include spatial games, in which individuals intera
only ~or mainly! with those within some geographical prox
imity. In that case, the study of spatial patterns seems
interesting issue to address. Work is in progress in that di
tion.
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