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Cooperation and self-regulation in a model of agents playing different games
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A simple model for cooperation between “selfish” agents, which play an extended version of the prisoner’s
dilemma game, in which they use arbitrary payoffs, is presented and studied. A continuous variable, represent-
ing the probability of cooperatiom,(t) [ 0,1], is assigned to each agdaat timet. At each time stepa pair
of agents, chosen at random, interact by playing the game. The players updatg theirsing a criterion
based on the comparison of their utilities with the simplest estimate for expected income. The agents have no
memory and do not use strategies based on direct reciprocity or “tags.” Depending on the payoff matrix, the
system self-organizes—after a transient—into stationary states characterized by their average probability of
cooperatiora3q and average equilibrium per-capita incoﬁg,Um. It turns out that the model exhibits some
results that contradict the intuition. In particular, some gamesatmatori seem to favor defection most, may
produce a relatively high degree of cooperation. Conversely, other games, which one would bet lead to
maximum cooperation, indeed are not the optimal for producing cooperation.
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[. INTRODUCTION cooperation and is thdominant strategyor rational agents.
This is equivalent to saying, in a more technical language,
Game theory constitutes a powerful and versatile apthat, the outcomeld,D) of both players is the Nash equilib-
proach to analyze the collective behavior of adaptive agentsium[21] of the PD game. The dilemma is that if both defect,
from humans to bacteria and firms. In particular, ghison-  both do worse than if both had cooperated: both players get
er’s dilemma(PD) game plays in game theory a role similar P which is smaller tharR.
to the harmonic oscillator in physics. It has been also re- One can assign payoff matrix MSTPto the PD game
ferred to as thdescherichia Coliof social sciences, allowing given by
a very large variety of studies. Indeed, this game, developed
in the early 1950s, offers a very simple and intuitive ap-
proach to the problem of how cooperation emerges in soci- MRSTF’:(
eties of “selfish” individuals, i.e., individuals who pursue
exclusively their own self-benefit. It was used in a series of
works by Axelrod and co-workefd ] to examine the basis of which summarizes the payoffs foow actions when con-
cooperation between selfish agents in a wide variety of confronting with columnactions.
texts. Furthermore, mechanisms of cooperation based on the The emergence of cooperation in PD games is generally
PD have shown their usefulness in political scieh2e4], assumed to require repeated pland strategies such &
Economicg5-11], international affair§12—15, theoretical for tat [1], involving memory of previous interactionsr

(R,R) (S,T)
(T,S) (P,P)

biology [16—18, and ecology19,20. featureq“tags”) permitting cooperators and defectors to dis-
The PD game consists in two players, sagndj, each tinguish one anothgr22].
confronting two choices: cooperat€) or defect(D) and In this work, | consider a simple model of selfish agents,

each makes its choice without knowing what the other willpossessing neither memory nor tags, to study the self-
do. The four possible outcomes for the interaction of agent organized cooperative states that emerge when they play an
with agentj are:(1) they can both cooperat€(C), (2) both  extendedPD game with arbitrary payoffs, i.e., payoffs that
defect ©,D), (3) i cooperates anfldefects C,D), and(4)  do not necessarily fulfill inequalitie€l). The taxonomy of

i defects andl cooperatesd,C). Depending on the situation 2X2 gamegone-shot games involving two players with two
(1), (2), (3), or (4), the agenti (j) gets, respectively: the actions eachwas constructed by Rapoport and Guj28],
“reward” R(R), the “punishment” P(P), the “sucker's and showed that there exist exactly 78 nonequivalent games.

payoff” S (the “temptation to defectT) or T(S). These There areN,4 agents, with one variable assigned to each
four payoffs obey the following chain of inequalities: agent at the site or cek and at timet: his probability of
cooperatiom,(t). Pairs of agents,andj, interact by playing
T>R>P>S; (1) the PD game at each time stepl use a mean fieldMF)

approach, in which all the spatial correlations in the system
for instance, the four canonical PD payoffs afe=3, are neglected, and thus agentndj are chosen at random
S=0,T=5, andP=1. Clearly it pays more to defect: if one [24]. After playing the game the players update their prob-
of the two players defects, saythe other who cooperates ability of cooperationp;(t) andp;(t) according to the same
will end up with nothing. In fact, even if agentooperates, definite “measure of success” that does not vary with time.
agentj should defect, because in that case he will §et Thus all agents follow a universal and invariant strategy de-
which is larger tharR. That is, independently of what the fined by a measure of success plus an updating rule to trans-
other player does, defectidd yields a higher payoff than form p;(t) andp;(t) into p;(t+1) andp;(t+1).
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After a transient, the system self-organizes into a state ofiature of the algorithms which seem to fail to incorporate the
equilibrium characterized by the average probability of co-stochastic component of human behavior.
operationp,q which depends on the payoff matrix. Both problems can be overcome by assigning to each

Payoff matrices can be classified into subcategories acgentk a probability of cooperatiop(t) (a real number in
cording to their dominant strategy. Let us chll, the class the interval[0,1]) instead of a definite behavior such@sr

of those matrices, such that D. Concerning the first objectiomp,(t) reflects the existence
of a “gray scale” of levels of cooperation instead of just
T>R, and P>S, (2) “black” and “white.” Regarding the second objection, the

proposed algorithm is clearly nondeterministic: adeptays
for which the dominant strategy B. This class comprises, C with probability p, andD with probability 1— p,.

for instance, the canonical matriM3°®! and M10%3 etc. A Now, let us describe the dynamics. The pairs of interact-
second clas$/ - corresponds to ing partners, by virtue of the MF treatment, are chosen ran-
domly instead of being restricted to some neighborhood. The

R>T, and S>P, (3)  implicit assumptions are that the population is sufficiently

large and the system connectivity is high, i.e., the agents

for which the dominant strategy S, examples of this class display high mobility or they experienced interaction at a
are the matrice™ >*°andM35°%, The remaining matrices do distance(for instance, electronic transactionn this work
not comply with Eq.(2) or (3) and produce situations  the population of agents will be fixed td,,= 1000 and the
priori, not dominated by,D) or (C,C). number of time steps will be of ordey= 10°— 10 in such a

One might wonder why bother to study matrices that im-way that both assumptions be also consistent with the fact
ply no dilemma and are unrealistic in order to model thethat agents have no memory.
social behavior of the majority of individuals. There are sev-  Starting from an initial state @t=0 taken ag,(0) cho-
eral reasons. First, these “unreasonable” payoff matrices cagen at randoniin the interval[0,1]) for each agenk, the
be used by minorities of individuals which depart from the system evolves by iteration durirlg time steps following
“normal” ones (assumed to be neutyaFor instance, “anti-  the procedure.
social” “always D” individuals, which cannot appreciate (1) Selection of playersTwo agents, located at random
any advantage of cooperation, or “altruistic” “alway8”  positionsi andj, are selected to interact, i.e., to play the PD
individuals. Second, it seems interesting to test the robusigame.
ness of cooperation under changes in the payoff matrix. In (2) Playing pairwise PD.The behaviorC or D, of each
particular, we will see thatEven payofimatrices that imply aplayerk (k=i or k=) is decided generating a random num-
dilemma can produce eith@g,=0.5 orpe,=0. Third, arbi-  berr and if p,(t)>r then he plays C and, conversely, if
trary payoff matrices could be also of importance in otherp,(t)<<r he playsD.
contexts different from societies. One might envisage situa- (3) Assessment of succe&ach of the two players com-
tions in which a definite value qf is required or is desir- Pares his utilities) (t), which is one of the four PD payoffs:
able in the design of a system or is the one that optimizes th& S T, or P, with anestimatee,(t) of his expected utilities.
functioning of a particular mechanism, etc. For example, tdf Uk(t)=ex(t) [Ui(t) <ek(t)] the agent assumes he is do-
understand how a market of competing firms attains selfing well (badly) and therefore its level of cooperation is ad-
regulation. Or, for instance, in the traffic problem, where theequate(inadequate
damage suffered from mutuBl (crash exceeds the damage  (4) Probability of cooperation updatéf playerk is doing
suffered by being exploitedturn away, which is more ap- Well he keeps his probability of cooperatign(t). On the
propriately described by the so-callathicken gamefor ~ other hand, if playekis doing badly he decreas@acreasep
which T>R>S> P. his probability of cooperatiomp,(t) if he played C(D)

Fourth, we will show results for those payoff matrices choosing an uniformly distributed value betwegt) and 1
that, at first glance, defy our intuition. For example, payoff[between 0 ang,(t)].
matrices that, at least in principle, one would bet that favor In order to introduce a simple and natural estimeg)
defection and indeed produce a not so low degree of coogét us consider two playeisandj who cooperate, at timg

eration. with probabilitiesp;(t) and p;(t), respectivelyjand defect
with probabilities 1-p;(t) and 1-p;(t)], thus the expected
gy . RSTP .
Il. A MECHANISM TO PRODUCE COOPERATIVE utilities for the played, Uj;>"(t), are given by

EQUILIBRIUM STATES
0 URSTAD =Rp(t)p;() +Sp(H[1—p;(t) ]+ T[1

Among the weaknesses of major approaches that have
been considered to answer the question about the emergence —pi]Ipj () +PI—pi(HI[1—pi(D)], (4)
of cooperation, two are often remarked. The first criticism is . )
about the oversimplification in the behavior of agents: theyWhile the expected utilities for the playgr , are ob-
either always cooperate€) or always defect). Clearly, tained by interchangingandj in the above equation.
this is not very realistic. Indeed, the levels of cooperation of This implies that, given the average probability of coop-
the individuals seem to exhibit a continuous gamma of val-erationp(t), an arbitrary agent, say numblercan estimate
ues. The second objection is concerning the deterministibis average expected utilities as

UJRiSTP
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URSTRp(1) =Rp(1)py(t) +Sp{1-p(1)] Il RESULTS
— — Depending on the payoffR,S, T, andP the system self-
+T1=p(]p()+PI=pOI[1-P(D)].  organizes, after a transient, in equilibrium states with values

(5) ofﬁeq ranging from 0 to 1. The equilibrium asymptotic states
can be lumped into three groups according to the degree of

However, it turns out that, in general, the valuepofs un- ~ CoOPeration attainediighly cooperative(pe,>0.5), moder-

known by the agents. Hence, a simpler estimate that can kiely cooperativg(pe,=0.5), andpoorly cooperative(pe
used by ageri for his expected utilitieg,(t) is obtained by  <0.5). The outcomes for any arbitrary payoff matk&STP
replacing in Eq(5) p(t) by his own probability of coopera- can be understood in terms of the updating rule for the co-
tion py(t): operation probability and the corresponding estim&te’",
i.e., from the inequalitie$7).
RSTR .« — o ) The payoff matrices that imply a dilemma—those that
e (D=RpP(D)+(S+T)pl1—pi(t) ]+ P[1-p(t)] comply with the chain of inequalitie$l)—lead either to
—(R—S— 2 _ Peq=3 OF t0 peq=0. From Eq.(7) it emerges thatp,
(R=S=T+PIP(+(SHT=2P)PdO+P. 0.5 occurs in the case wheRSTP- P has no roots in the
6) interval (0,1] (p=0 is always one of the two rogtsand

Peq=0 in the opposite case.
In other words, agerk adopts the simplest possible extrapo- Some other matrices not belonging to cldsg exhibit a

lation, i.e., that he is a “normal” individual whose probabil- tensjon betwee andD and give rise tgp=%. The matrices

ity of cooperation is representative of the average value. that do not embody such trade-off produce the situations that
The rule each player follows to update his probability of 1

e sathl ] > P »~ Oldepart most fronpeq=3.
Soopera_t|0? Is quite T‘at“ra' and ?f th(_e_t_ype win-stay” and It is illustrative to consider, for a moment, the restricted
lose-shift.” That is, if the player’s utilitiesU, are larger

than his estimate, he keeps his probability of cooperation. Osubset of 24 payoff matrices obtained from permutation of

the other hand. if the utiliti ler than hi timat the four canonical payoff values because it covers the three
€ other hand, 1I the utiities are smatler than his estima egroups with different cooperation levels mentioned above. In
he changes his probability of cooperatida) increasing it if

he playedD or (b) decreasing it if he playe@. From Eq.(6) fact, the system s.elf orgar_uzes w;;glequnlbsr;tim states with

the update ofp,(t)— py(t+1) is governed by the sign of SEVEN Values Obeg: %Or;;atrlces gfsa andM?*) produce

U (t)— eR5TR1), i.e., by the following inequations: Peq= 1,2 matrices M~ and M~ producepeq=0. The
remaining 20 matrices produce intermediate valups;

=0.72 (M>3%), peg=0.62 M*19, p,~0.38 (M),
Peq=0.28 M'%9), andp.,= 0.5 (the other 16 matrices and
—p 0 among them the canonical payoff majriXhe 24 measures
< are performed over 500 simulations. Figure 1 shows the av-
erage probability of cooperation for different payoff matrices
7 versus time for the 50 000 first time steps. The mirror sym-

metry with respect to the value=0.5 between the curves

Yy i i RSTP ;
in the case>0 (<0) p, is increaseddecreased for p(t) coLrTeSsFepndlng to a given matri and its pal-

In the following section we will see that the strategy that'NdromeM™">"is due to the symmetry of the game when
results from the combination of the proposed measure of'terchanginR« P andS—T simultaneously with coopera-
success and update rule fog—the steps(3) and (4)—pro-  10rs C by defectorsD. That is,
duces, for a wide variety of payoff matrices, cooperative — —

L pRETAD =(1-p)" TSR D). ®
states withpg>0.

Let us end this section with a remark about the problem A particular interesting case study is provided by payoff
addressed here and its relation with the evolution of COOPz, Atriy \10135, it 1 ; : ;
eration. In this approach, there is no competition of dil‘ferent(r:namxN—I ; -Wlth Peq 0.38. T_h|s result seems, at first Slg-ht’

) ’ . ounterintuitive: an intermediate cooperation level attained
strategies, all the agents follow the same universal strategy, o reward(and very low sucker's payoffNevertheless
that does not evolve over time. However, the system is adaRg; ;s show how the updating rule for the cooperation prob-
tive in the sense that the probabilities of cooperation of theability explains this outcome. The estimate for this matrix,

agents do evolve. given by the parabola

(S+T—R—P)p&(t)— (S+T—2P)p(t) +

T 4 n D
\

ek =Pk~ 6py+S, €]
Considering more sophisticated agents, which have “good infor-
mation” on the populatior(for instance, the value gf at timet), plotted as a solid curve in Fig. @he horizontal lines a8
does not change substantially the main results obtained with these 1 and T=3 cut the parabola at abscisps=3—5 and
naive agents. pr=3—/7, respectively. The cooperation update rule tells
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FIG. 1. Curves ogvs the number of iterations corresponding

to the 24 payoff matrices obtained by permuting the four canonical

payoffsR=3, S=0, T=5, andP=1. The system self-organizes in
seven different cooperative states withag=1, Peq=0.72, Peq
=0.62, peg=0.5, Peq=0.38, p=0.28, andp.=0.

us that the agerik increases his probability of cooperation
when he playsD and getsT=3 if py is less thanp;=3
—\7<0.5, i.e., this temptation is not enoughT
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FIG. 2. (a) Below: The estimate®*Yp) vs p (solid line) com-
pared with the estimates that result for independent variations of
payoffsSandP, once at a time&°?3® (dotted thin lin@, €°2®(dotted
thick line), €134 (dot-dashed thin line and €°*2¢ (dot-dashed thick
line). The circles correspond to the pointg;3s=1 and egq35= 3.

The filled up(down) triangles correspond to the poirdg,3s=2 and
€0235= 3 (€gp3s= 0 andeggss=3). The nonfilled ugdown) triangles
correspond to the pointsy36=1 andegi36=3 (€p13=1 andegyaa
=3). (b) Above: The estimate®3Yp) vs p (solid line) compared
with the estimates that result for independent variations of payoffs

<ed*Ypy)]. On the other hand, he decreases his probabilitgndR, once at a time&®'?® (dashed thin ling €4 (dashed thick

of cooperation when he playS and getsR=0, indepen-
dently of the value op,, or when he get§=1 if p is less
thanps=3—/5>0.5. In the remaining situations the player

keeps his probability of cooperation. Thus a valuepgf,

line), and €'1%® (+'s). The circles correspond to the poinggss
=1 and ”%=3. The filled up triangles correspond to the points
€l1%=1 and '¥*=3. The nonfilled up(down) triangles corre-
spond to the points®=1 and "%5=4 ("?=1 and "%
=2). See text.

between 0 and 0.5 is not surprising after all, rather it is the

result of giving the two competing probabilities of coopera-
tion flows. All this analysis for payoff matrisv °3° works
also for any set of payoffs obeying the inequalities
P>T>S>R, (10
the only thing that changes is the valuep_)gg. We will come

back over this particular payoff matrix to illustrate hqy,
changes under arbitrary variations of the payoffs.

The effect of changing payoffs

controlled by the displacements p§ and ps (for instance,
for M2 p,=p; andps=psg). If p, or p; corresponds to
the cooperative payoffR or S then its displacement to the
right (left) decreasesincreasesthe proportion ofC agents
for whom U, > ¢, which are, on average, the ones who re-
main C after playing the game. This in turn decreases

creaseppeq. On the other hand, ip, or p; corresponds to
the noncooperative payoff, or P, then its displacement to
the right (left) decreasegincreases the proportion ofD
agents for whomU,> ¢, which are, on average, the ones
who remainD after playing the game. This in turn increases

We are now going to analyze the effect of changing the(decreasésagq.

payoff matrix in order to go beyond the 24 permutations of

the canonical payoffs.

The payoff matrixM °3°will serve to illustrate the effect
the changes in the values of the payoffs havepgp. We

We have seen that the sign df,— €, controls the update ;|| proceed by modifying one of the four payoffs at a time
of px. From the definition ok, , as an estimate of utilities of and keeping fixed the remaining three in such a way that the
agentk, it is clear that it is bounded from above and from chain of inequalities10) is preserved. This variation of a
below by the largest and smallest of the four payoffs, respecquantity that results when the payoffis modified and the
tively. Thus,U,— €, may have different signs, depending on other three payoffs remain fixed is denoteddy. The esti-
the value ofpy, only for the two intermediate payoffs. Let us mates that result from these changes are the curves shown in

denote byp; the value ofp, such that the estimate, be-
comes equal to the larger payqff; the value ofp, such that

Fig. 2. Let us consider first the chang&s-, produced by an
increment in the sucker’s payoff fro®=1 to S=2 (which

the estimate becomes equal to the second larger payoff, anghnsformsM %13 into M%%39, &5, produced by a decrease

so on. Therefore, it is easy to see that the change.iis

from S=1 to S=0 (which transformv®*3%into M°°%9 . For
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05 Sp+(Pa—Pa)=(0.419-0.354 — (0.775- 0.764 = 0.054>0,
0.48 %
0.46 [ 8p-(Pa—Pa)=(0.25-0.354 — (0.75-0.764 = —0.09<0.
0.4a [ (12
0.42 \ On the other hand, let us consider the variations produced
04 \ by the increment of the temptatiofy+, from T=3 to T
- s =4 (which transformsM %% into M%49, and by its de-

P> 0.8 creased;-, from T=3 to T= 2 (which transformavi°*3®into
0.36 MO%29  For M%%45 p, is the abscise corresponding to the
034 point ,=T=4 (nonfilled up triangle and for M°?5 p, is
032 | ",_+\$\ 1 the abscise of the poirg=T=2 (nonfilled down trianglg

03| R R while the corresponding; are the abscises of the points

026 | AR AR e=S=1 (nonfilled triangles: up foM 4 and down for

' R M%29 In Fig. Ab) we can see that increasifidecreasing

026 5 5000 10000 15000 20000 the sucker’s payoff, frorT=3 to T=4 (T=2), produces a
iterations displacement ofy, to the left(right), from 3— \/7=0.354 to

FIG. 3. The effect of independent variations of pay@f$, and 0.2 (to 0.5 and of p; to the right (left), from 3— \/E
P (th.e reward re.mallins fixed &=0), once fit a.time, from payoff (g 764 to 0.qto (7— \/17)/2:0.719]_ Hence, both changes
matrix M35 Variations ofS S=2 (dotted thick lin@, S=0 (dotted point in the same direction decreasifigcreasing peq as can

thin line). Variations ofP: P=6 (dot-dashed thick ling P=4 (dot- rved in Ei hed lines ver lid linghat i
dashed thin ling Variations of T: T=4 (dashed thick ling T=2 be observed 9. &lashed lines versus solid lindhat is

(dashed thin |||"|)3 Variations ofR: R=1 (“ +” ) 6T+(p2_ ps):(oz_ 0354 _ (08_ 076‘9 =—0.19%< O,

MO9235 p. is the abscise of the poirng,=S=2 [filled up o AE B _
triangle in Fig. 2a)] and forM %35 p, is the abscise of the O1-(P2~P3)=(0.5-0.354 ~(0.719- 0'764_0'1%83)

point €,=S=0 [filled down triangle in Fig. 2a)], while the
correspondingp, are the abscises of the poingg=T=3  With a similar argument one realizes that increasidg-
[filled triangles: up forM%> and down forM®®in Fig.  creasing the rewardR=0 Peq decreasegincreasek
2(a)]. We can see that increasiridecreasing the sucker’s In summary, for payoff matrices lik¥°235 which obey
payoff, fromS=1 to S=2 (S=0), produces a displacement the chain of inequalitie610), we found two expected results:
of p, to the right(left), from 3—\7=0.354 to 0.4[to (7  a higher value opeq can be reached by increasing the suck-
—/33)/4=0.314], and ofp; to the left (right), from 3  er’s payoffS (which makesC agents more altruisticor de-
—/5=0.764 to 0.6(to 1). Hence, both changes point in the creasing the temptatiof (reducing the incentives to free
same direction increasin@ecreasing p.q as can be ob- ride). Additionally, we found twaa priori unexpected results:
served in Fig. 3(dotted lines versus solid lingsin other  a higher value op., can also be reached by increasing the
words, punishmentP or decreasing the rewarfd By an inspection
_ _ of Fig. 2(a) the effect of an increment &f can be understood
9s+(P2~P3)=(0.4-0.359 ~(0.6-0.764=0.21>0, as a rising the expectations of tieagents, which in turn
ds-(P2—p3)=(0.314-0.354 - (1—-0.764 = —0.276<0. diminishes the fraction of agents that are satisfied after play-
(1) ing the game. Similarly, from Fig.(B) we can see that de-
o o crease oR makes theC agents less ambitious and increases
Similarly, we denote bysp+ the variations produced by the fraction of altruists.
an mcrementlm the punllshment, frof=5 to P=6 (which It is worth remarking that, for the case of payoffs obeying
transformsM ***into M%%), and bysp- the variations pro- - £q. (10), something which at first seems as innocent as to
duced by a decrease n the punllshment, flBm5 10 P jnterchange the two noncooperative payoffieind P has a
=4 (which transformsvl ***into M®**%. For both matrices, gramatic consequence: it transforms a system with an inter-
the corresponding, and p; are the abscises of the points mediate level of cooperation into one with null cooperation.
e=T=3 ande,=S=1 (nonfilled triangles in Fig. 2: up for This can be understood by comparing the estin{@iefor

M®3¢and down forM®'*), respectively. Also in Fig. @  payoff matrixM°%to the one foM %153 which is given by
we see that changing the punishment, frés5 to P=6

(P=4), produces a displacement p§ to the right (left), e15%= —3pZ+3. (14)
from 3—\7=0.354 to (4- /10)/2=0.419(t0 0.25 , and of

ps; to the right (left), from 3—5=0.764 to (4-6)/2  Both estimates have maximum valueRf5 and 3, respec-
=0.775(to 0.79, hence the two changes point in oppositetively, at p,=0), but the important difference is that in the
directions: the first tends to increa@#ecreasep,q and the  first caseP is the maximum payoff while in the second one
second to decreadincreaseg it. As the first displacement is P<T. Thus in this second case, only the agents that glay
larger it dominates, and the net result is an incre@®  can do badly, and then the only possible changepfofac-
creasg of peq as can be observed in Fig.(8ot-dashed lines cording to its update rujeis a reduction till it reaches zero
versus solid ling That is, value.
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Finally, let us include a note regarding the efficiency to  An interesting extension of the model would be to allow
attain cooperative regimes. The state of maximum cooperazompetition of different strategies to promote their evolution,
tion pe=1 is reached for payoff matrices such @R € players who imitate the best-performing ones in such a
>maxT,P} plus the condition that equation way that Iov_ver scoring strategies decrease in number and the

higher scoring ones increase.
Another possibility would be to allow the use of distinct
(S+T—-R—P)p?>—(S+T—2P)p+R—P=0 (15 payoff matrices. For instance, individuals inclined to cooper-
ate (defe(:gag;ightlgf represented by agents using the payoff
. . : . matrix M M while “neutral” ordinary agents b
has no roots in the interv0,1] different fromp=1 [whlch_ those using tr(1e ca20nical payoff matiig35 yThi% wouldy
is always a root of Eq(15)]. This condition on the roots is  ,axe possible to study if mutants inclined@ocan invade a
because in the opposite case, when there is a pedh  4royp of neutral individuals or individuals inclined @and
between 0 and 1, it follows easily from inequatidisthatp drive out all cooperation.
converges to the semisum p§ and 1. It can be checked by Here | considered a MF approximation that neglects all
elemental algebra that this is the case of, for instance, payofhe spatial correlations. One virtue of this simplification is
matricesM 3%01 3510 that it shows that the model does not require that agents
interact only with those within some geographical proximity
in order to sustain cooperation. Playing with fixed neighbors
IV. CONCLUSIONS is sometimes considered as an important ingredient to suc-

i , . cessfully maintain the cooperative regif#b,2€. However,
The success of the strategy to attain cooperative regimgge quality of this MF approximation depends on the nature

for a wide variety of gameépayoff matrices—mainly those  of the system one desires to model, and varies whether one
that imply dilemmas or clearly favdd—relies on the com-  deals with human societies, virug&y], cultures of bacteria
bination of the proposed measure of success and update ryi2g], or market of providers of different products. In order to
for the probability of cooperation. Basically, it works by tun- consider situations in which the effect of geographic close-
ing the agent's cooperation guided by a trade-off betweemess cannot be neglected, an alternative version of this model
efficiency(increase of utilitiesand equity(indirect reciproc-  might include spatial games, in which individuals interact
ity). If the agent is doing well he maintains his probability of only (or mainly) with those within some geographical prox-
cooperation, otherwise he changes it. When he is doing badlynity. In that case, the study of spatial patterns seems an
playing D he becomes more cooperative, i.e., he increasekteresting issue to address. Work is in progress in that direc-
his probability of cooperation, attempting to change to bedion.

havior C and explore this alternative behavior. Conversely, if

he is doing badly playin@ then he decreases his probability ACKNOWLEDGMENTS
of cooperation attempting to change to behaboand see | thank R. Axelrod for valuable opinions and R. Donan-
what happens. gelo for useful discussions and criticism.
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